Tetrahedron 66 (2010) 9336-9339

FLSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

One-pot synthesis of 1,4-dihydro-3,1-benzoxazine-2-thiones by the reaction of 2-lithiophenyl isothiocyanates with aldehydes or ketones

Kazuhiro Kobayashi*, Yuki Yokoi, Toshihide Komatsu, Hisatoshi Konishi

Division of Applied Chemistry, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan

A R T I C L E I N F O

Article history: Received 27 August 2010 Received in revised form 4 October 2010 Accepted 4 October 2010 Available online 21 October 2010

Keywords:

1,4-Dihydro-3,1-benzoxazine-2-thiones 2-Lithiophenyl isothiocyanates Bromine-lithium exchange Nucleophilic addition Cyclization reaction

ABSTRACT

An efficient one-pot method for the synthesis of 4-monosubstituted and 4,4-disubstituted 1,4-dihydro-3,1-benzoxazine-2-thiones has been developed. Treatment of 2-bromophenyl isothiocyantes with bu-tyllithium in THF at -78 °C generates 2-lithiophenyl isothiocyanates, which are allowed to react with various carbonyl compounds, including aldehydes, ketones, and butanolide, to give the corresponding desired products in moderate to good yields.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Certain compounds having the 1,4-dihydro-3,1-benzoxazine-2thione skeleton have been reported to exhibit a broad spectrum of biological activity.¹ This class of heterocycles has been synthesized by the treatment of the respective 1,4-dihydro-3,1-benzoxazin-2one derivatives with Lawesson's reagent at rather high temperatures.^{1a,b,d} To the best of our knowledge no one-pot syntheses from readily available starting materials have been reported. In this paper, we wish to report an efficient one-pot method for the preparation of 1.4-dihydro-3.1-benzoxazine-2-thiones carrying one or two substituents at the 4-position. We found that treatment of 2-bromophenyl isothiocyanates with butyllithium generated 2-lithiophenyl isothiocyanates and that their reaction with various aldehydes or ketones gave1,4-dihydro-3,1-benzoxazine-2-thiones.² We report as well the synthesis of 1,4-dihydrospiro[3,1-benzoxazine-4,2'-tetrahydrofuran]-2-thiones utilizing butanolide in place of aldehydes or ketones.

2. Results and discussion

The synthesis of 4-monosubstituted and 4,4-disubstituted 1,4dihydro-3,1-benzoxazine-2-thiones **5** from 2-bromophenyl isothiocyanates **1** via 2-lithiophenyl isothiocyanates **2** is illustrated in Scheme 1. One of the starting materials, 2-bromophenyl

isothiocyanate **1a**, was commercially available. The other starting material, 2-bromo-4-chlorophenyl isothiocyanate **1b**, was easily prepared from commercially available 2-bromo-4-chlorobenzenamine. This aniline derivative was transformed into 2-bromo-4-

^{*} Corresponding author. Tel./fax: +81 857 31 5263; e-mail address: kkoba@ chem.tottori-u.ac.jp (K. Kobayashi).

^{0040-4020/\$ —} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.10.010

chlorophenyl isocyanide by the standard N-formylation with formic acid³ followed by the dehydration of the resulting formamide with phosphoryl chloride in the presence of triethylamine.⁴ This isocyanide was then converted into the corresponding isothiocyanate 1b on treatment with sulfur in the presence of a catalytic amount of selenium and excess triethylamine under conditions reported by Fuiiwara et al.⁵

The new 2-lithiophenyl isothiocyanates 2 were readily generated by the treatment of 2-bromophenyl isothiocyanates 1 with an equimolar amount of butyllithium in THF at -78 °C. These lithium intermediates were immediately allowed to react with aldehydes or ketones to form lithium 2-isocyanatobenzyloxide intermediates 3. These intermediates quickly cyclized intramolecularly by the attack of the alkoxide oxygen on the isothiocyanate carbon to give 1-lithio-1,4-dihydro-3,1-benzoxazine-2-thione intermediates 4, which gave, after the usual aqueous workup followed by purification by recrystallization, 4-monosubstituted or 4,4-disubstituted 1,4-dihydro-3,1-benzoxazine-2-thiones 5 in satisfactory yields. The addition of carbonyl compounds 5 min later on treatment of 1 with butyllithium resulted in formation of complex mixtures of products containing rather lower yields of the desired products. This implies that the generation of the lithium intermediates was accomplished rapidly and that they were unstable and decomposed even at -78 °C. Both aliphatic and aromatic carbonyl compounds proved suitable for the present preparation. The isolated yields of the desired products range from 50 to 79% as summarized in Table 1.

Table 1

Table 1	
Preparation of	1,4-Dihydro-3,1-benzoxazine-2-thiones

Entry	1	R ² COR ³	5 (Yield/%) ^a
1	1a	EtCHO	5a (69)
2	1a	PhCHO	5b (77)
3	1a	3-ClC ₆ H ₄ CHO	5c (73)
4	1a	3-MeOC ₆ H ₄ CHO	5d (74)
5	1a	Naphthalene-1-carboxaldehyde	5e (71)
6	1a	EtCOMe	5f (69)
7	1a	Cyclohexanone	5g (71)
8	1a	PhCOMe	5h (79)
9	1a	1-(Thiophen-2-yl)ethanone	5i (76)
10	1a	PhCOPh	5j (50)
11	1b	EtCHO	5k (65)
12	1b	4-ClC ₆ H ₄ CHO	5l (76)
13	1b	Cyclohexanone	5m (69)
14	1b	PhCOMe	5n (53)

^a Isolated yields.

Subsequently, we found that when 2-lithiophenyl isothiocyanates 2 were treated with butanolide under the same conditions as described above for the preparation of 5, a similar addition/cyclization sequence occurred to afford the corresponding 1,4-dihydrospiro[3,1benzoxazine-4,2'-tetrahydrofuran]-2-thiones 6 in moderate yields as shown in Scheme 2. Unfortunately, however, several attempts to prepare 1,4-dihydrospiro[3,1-benzoxazine-4,2'-tetrahydropyran]-2thiones using pentanolide were unsuccessful; the reactions gave

Scheme 2

considerably more complex mixtures of products. This is probably due to less reactivity of this lactone toward the lithium intermediates **2** compared to butanolide.

In conclusion, we have developed a novel method for the preparation of 1.4-dihydro-3.1-benzoxazine-2-thiones using the reaction of 2-lithiophenyl isothiocyanates with aldehydes, ketones, or a lactone. The present method may find some value in organic synthesis, because: (1) this is the first generation of 2-lithiophenyl isothiocyanates; (2) the starting materials are readily available; (3) the operations are very simple.

3. Experimental

3.1. General

All melting points were obtained on a Laboratory Device MEL-TEMP II melting apparatus and are uncorrected. IR spectra were determined with a Shimadzu FTIR-8300 spectrophotometer as KBr disks. ¹H NMR spectra were determined using TMS as an internal reference with a JEOL ECP500 FT NMR spectrometer operating at 500 MHz or a JEOL LA400 FT NMR spectrometer operating at 400 MHz. ¹³C NMR spectra were determined using TMS as an internal reference with a JEOL ECP500 FT NMR spectrometer operating at 125 MHz or a JEOL LA400 FT NMR spectrometer operating at 100 MHz. Low-resolution MS spectra (CI) were measured with a JEOL JMS AX505 HA spectrometer. TLC was carried out on a Merck Kieselgel 60 PF₂₅₄. Column chromatography was performed using Wako Gel C-200E. All of the organic solvents used in this study were dried over appropriate drying agents and distilled prior to use.

3.2. Starting materials

All chemicals used in this study are commercially available.

3.2.1. N-(2-Bromo-4-chlorophenyl)formamide. This compound was prepared in 87% yield by the standard N-formylation of 2-bromo-4chlorobenzeneamine with formic acid in toluene under azeotropic conditions;³ a pale-yellow solid; mp 147 °C (hexane/THF) (lit.,⁶ 154 °C); IR 3246, 1695, 1665 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.45 (dd, J=8.7, 2.0 Hz, 1H), 7.79 (d, J=2.0 Hz, 1H), 8.03 (d, J=8.7 Hz, 1H), 8.34 (s, 1H), 9.83 (s, 1H).

3.2.2. 1-Bromo-5-chloro-2-isocyanobenzene. This compound was prepared in 75% yield by dehydration of the above formamide with POCl₃/Et₃N in THF at 0 °C;⁴ a pale-yellow solid; mp 38–40 °C (hexane/Et₂O); IR (KBr) 2128 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J=8.7, 2.0 Hz, 1H), 7.39 (d, J=8.7 Hz, 1H), 7.68 (d, J=2.0 Hz, 1H). Anal. Calcd for C7H3BrClN: C, 38.84; H, 1.40; N, 6.47. Found: C, 38.82; H, 1.43; N, 6.33.

3.2.3. 1-Bromo-5-chloro-2-isothiocyanatobenzene (1b). This compound was prepared in 86% yield by treating the above isocyanide with sulfur in the presence of catalytic amount of selenium and Et₃N in THF at room temperature;⁵ a white solid; mp 21–23 °C (hexane); IR (KBr) 2068 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J=8.3 Hz, 1H), 7.27 (dd, J=8.3, 2.5 Hz, 1H), 7.59 (d, J=2.5 Hz, 1H). Anal. Calcd for C₇H₃BrClNS: C, 33.83; H, 1.22; N, 5.63. Found: C, 33.78; H, 1.20; N, 5.53.

3.3. Typical procedure for the preparation of 1,4-dihydro-3,1benzoxazine-2-thiones 5 and 6

3.3.1. 4-Ethyl-1,4-dihydro-3,1-benzoxazine-2-thione (5a). To a stirred solution of 1a (0.21 g, 1.0 mmol) in THF (4 mL) at -78 °C was added n-BuLi (1.6 M solution in hexane; 1.0 mmol) dropwise. After 1 min propanal (58 mg, 1.0 mmol) was added and stirring was continued for an additional 15 min. The mixture was diluted with Et₂O (10 mL) and saturated aqueous NH₄Cl (10 mL) was added. The layers were separated and aqueous layer was extracted with AcOEt twice (10 mL each). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated by evaporation. The residue was triturated with Et₂O/hexane (1:9, 10 mL), and the precipitate was collected by filtration and recrystallized from hexane/CHCl₃ to give **5a** (0.11 g, 59%); a pale-yellow solid; mp 90-92 °C; IR (KBr) 3173, 1622, 1169 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.09 (t, *J*=7.3 Hz, 3H), 1.99–2.11 (m, 2H), 5.40 (t, *J*=6.0 Hz, 1H), 6.89 (dd, *J*=7.8, 0.9 Hz, 1H), 7.09 (d, *J*=7.8 Hz, 1H), 7.16 (ddd, *I*=7.8, 7.3, 0.9 Hz, 1H), 7.30 (ddd, *I*=7.8, 7.3, 0.9 Hz, 1H), 9.66 (br s, 1H); ¹³C NMR (125 Hz, CDCl₃) δ 8.77, 27.97, 82.29, 114.02, 121.17, 124.43, 125.08, 129.24, 132.28, 184.81; MS *m*/*z* 194 ([M+1]⁺, 100). Anal. Calcd for C₁₀H₁₁NOS: C, 62.15; H, 5.74; N, 7.25. Found: C, 61.87; H, 5.77; N, 7.13.

3.3.2. 4-Phenyl-1,4-dihydro-3,1-benzoxazine-2-thione (**5b**). A paleyellow solid; mp 187–190 °C (hexane/CHCl₃); IR (KBr) 3175, 1618, 1163 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.40 (s, 1H), 6.88 (d, *J*=7.3 Hz, 1H), 6.92 (d, *J*=7.8 Hz, 1H), 7.12 (ddd, *J*=7.8, 7.3, 1.4 Hz, 1H), 7.32–7.37 (m, 3H), 7.40–7.42 (m, 3H), 9.48 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 82.47, 113.77, 121.21, 125.13, 126.04, 128.00, 128.86, 129.48, 129.74, 132.80, 136.53, 184.68; MS *m*/*z* 242 ([M+1]⁺, 100). Anal. Calcd for C₁₄H₁₁NOS: C, 69.68; H, 4.59; N, 5.80. Found: C, 69.43; H, 4.31; N, 6.01.

3.3.3. 4-(3-*Chlorophenyl*)-1,4-*dihydro*-3,1-*benzoxazine*-2-*thione* (**5***c*). A pale-yellow solid; mp 159–161 °C (hexane/CHCl₃); IR (KBr) 3173, 1620, 1159 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.36 (s, 1H), 6.89 (d, *J*=7.8 Hz, 1H), 6.95 (d, *J*=7.8 Hz, 1H), 7.15 (dd, *J*=7.8, 7.3 Hz, 1H), 7.28 (d, *J*=7.3 Hz, 1H), 7.33–7.40 (m, 4H), 9.60 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 81.49, 113.99, 120.50, 125.34, 125.89, 126.17, 128.05, 129.71, 130.04, 130.18, 132.72, 134.86, 138.47, 184.31; MS *m/z* 276 ([M+1]⁺, 100). Anal. Calcd for C₁₄H₁₀ClNOS: C, 60.98; H, 3.66; N, 5.08. Found: C, 60.86; H, 3.55; N, 5.06.

3.3.4. 4-(3-*Methoxyphenyl*)-1,4-*dihydro*-3,1-*benzoxazine*-2-*thione* (**5d**). A pale-yellow solid; mp 185–187 °C (hexane/CHCl₃); IR (KBr) 3181, 1618, 1153 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.80 (s, 3H), 6.34 (s, 1H), 6.91–6.94 (m, 5H), 7.12 (t, *J*=7.3 Hz, 1H), 7.26–7.35 (m, 2H), 9.63 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 55.34, 82.29, 113.38, 113.72, 115.07, 120.20, 121.17, 125.14, 126.07, 129.75, 129.89, 132.76, 137.97, 159.91, 184.67; MS *m/z* 272 ([M+1]⁺, 100). Anal. Calcd for C₁₅H₁₃NO₂S: C, 66.40; H, 4.83; N, 5.16. Found: C, 66.24; H, 4.65; N, 5.24.

3.3.5. 4-(*Naphthalen-1-yl*)-1,4-*dihydro-3*,1-*benzoxazine-2-thione* (**5e**). A pale-yellow solid; mp 175–178 °C (hexane/CHCl₃); IR (KBr) 3175, 1618, 1165 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.73 (d, *J*=7.8 Hz, 1H), 6.99 (d, *J*=8.2 Hz, 1H), 7.05 (dd, *J*=7.8, 7.3 Hz, 1H), 7.06 (s, 1H), 7.33–7.36 (m, 2H), 7.45 (dd, *J*=8.2, 7.3 Hz, 1H), 7.52–7.55 (m, 2H), 7.92–7.94 (m, 2H), 8.06–8.08 (m, 1H), 9.59 (br s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 78.76, 114.22, 121.03, 124.44, 124.67, 125.22, 125.56, 126.15, 126.71, 127.07, 128.78, 129.58, 130.14, 130.67, 132.32, 133.52, 133.74, 183.46; MS *m/z* 292 ([M+1]⁺, 100). Anal. Calcd for C₁₈H₁₃NOS: C, 74.20; H, 4.50; N, 4.81. Found: C, 74.11; H, 4.21; N, 4.58.

3.3.6. 4-*Ethyl*-4-*methyl*-1,4-*dihydro*-3,1-*benzoxazine*-2-*thione* (*5f*). A pale-yellow solid; mp 98–100 °C (hexane/CHCl₃); IR (KBr) 3179, 1620, 1190 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.95 (t, *J*=7.3 Hz, 3H), 1.74 (s, 3H), 2.02–2.06 (m, 2H), 6.98 (d, *J*=7.3 Hz, 1H), 7.08 (d, *J*=7.3 Hz, 1H), 7.15 (td, *J*=7.3, 0.9 Hz, 1H), 7.28 (td, *J*=7.3, 1.4 Hz, 1H), 10.46 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 8.06, 26.31, 33.71, 88.06, 114.18, 123.87, 124.87, 125.22, 128.97, 131.66, 184.10; MS *m/z*

208 ([M+1]⁺, 100). Anal. Calcd for C₁₁H₁₃NOS: C, 63.74; H, 6.32; N, 6.76. Found: C, 63.81; H, 6.30; N, 6.51.

3.3.7. 1',4'-Dihydrospiro[cyclohexane-1,4'-[3,1]benzoxazine]-2'-thione (**5g**). A pale-yellow solid; mp 149–151 °C (hexane/CHCl₃); IR (KBr) 3150, 1618, 1175 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.21–1.37 (m, 1H), 1.66–1.77 (m, 4H), 1.83–1.86 (m, 1H), 1.96–2.05 (m, 2H), 2.21–2.23 (m, 2H), 6.99 (dd, *J*=7.8, 0.9 Hz, 1H), 7.13–7.17 (m, 2H), 7.23–7.29 (m, 1H), 10.59 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 20.75, 24.87, 35.25, 85.60, 114.21, 123.02, 125.33, 126.97, 128.85, 131.72, 184.02; MS *m*/*z* 234 ([M+1]⁺, 100). Anal. Calcd for C₁₃H₁₅NOS: C, 66.92; H, 6.48; N, 6.00. Found: C, 66.89; H, 6.41; N, 5.96.

3.3.8. 4-Methyl-4-phenyl-1,4-dihydro-3,1-benzoxazine-2-thione (**5h**). A pale-yellow solid; mp 194–196 °C (hexane/CHCl₃); IR (KBr) 3171, 1620, 1178 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.09 (s, 3H), 6.97 (d, *J*=7.8 Hz, 1H), 7.22–7.37 (m, 8H), 10.21 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 27.95, 87.14, 114.31, 125.07, 125.11, 125.43, 125.49, 128.43, 128.45, 129.54, 132.26, 142.11, 184.45; MS *m*/*z* 256 ([M+1]⁺, 100). Anal. Calcd for C₁₅H₁₃NOS: C, 70.56; H, 5.13; N, 5.49. Found: C, 70.28; H, 5.05; N, 5.45.

3.3.9. 4-Methyl-4-(thiophen-2-yl)-1,4-dihydro-3,1-benzoxazine-2thione (**5i**). A pale-yellow solid; mp 139–141 °C (hexane/CHCl₃); IR (KBr) 3169, 1620, 1177 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.21 (s, 3H), 6.82 (d, *J*=2.9 Hz, 1H), 6.89 (dd, *J*=4.9, 3.9 Hz, 1H), 6.99 (d, *J*=7.8 Hz, 1H), 7.19–7.32 (m, 3H), 7.36 (ddd, *J*=7.8, 7.3, 1.4 Hz, 1H), 10.25 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 28.54, 84.46, 114.27, 124.58, 125.15, 125.30, 126.07, 126.56, 126.80, 129.90, 132.06, 146.10, 183.73; MS *m*/*z* 262 ([M+1]⁺, 100). Anal. Calcd for C₁₃H₁₁NOS₂: C, 59.74; H, 4.24; N, 5.36. Found: C, 59.53; H, 4.20; N, 5.28.

3.3.10. 4,4-Diphenyl-1,4-dihydro-3,1-benzoxazine-2-thione (**5***j*)⁷. A white solid; mp 226–228 °C (hexane/CHCl₃); IR (KBr) 3169, 1614, 1178 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.68 (dd, *J*=7.8, 1.4 Hz, 1H), 7.07–7.09 (m, 4H), 7.11 (d, *J*=7.8 Hz, 1H), 7.15 (ddd, *J*=7.8, 7.3, 1.4 Hz, 1H), 7.39–7.43 (m, 7H), 12.34 (br s, 1H).

3.3.11. 6-*Chloro-4-ethyl-1,4-dihydro-3,1-benzoxazine-2-thione* (**5***k*). A white solid; mp 127–129 °C (hexane/CHCl₃); IR (KBr) 3165, 1618, 1159 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.10 (t, *J*=7.3 Hz, 3H), 2.04 (quint, *J*=7.3 Hz, 2H), 5.37 (t, *J*=7.3 Hz, 1H), 6.92 (d, *J*=8.8 Hz, 1H), 7.09 (d, *J*=2.4 Hz, 1H), 7.27 (dd, *J*=8.8, 2.4 Hz, 1H), 10.37 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 8.74, 27.85, 81.74, 115.29, 122.84, 124.65, 129.33, 130.25, 130.90, 184.50; MS *m/z* 228 ([M+1]⁺, 100). Anal. Calcd for C₁₀H₁₀ClNOS: C, 52.75; H, 4.43; N, 6.15. Found: C, 52.72; H, 4.68; N, 6.19.

3.3.12. 6-Chloro-4-(4-chlorophenyl)-1,4-dihydro-3,1-benzoxazine-2thione (**51**). A pale-yellow solid; mp 199–203 °C (hexane/THF); IR (KBr) 3163, 1614, 1155 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 6.68 (s, 1H), 7.10 (d, *J*=8.8 Hz, 1H), 7.11 (d, *J*=2.4 Hz, 1H), 7.35 (d, *J*=8.8 Hz, 2H), 7.45 (dd, *J*=8.8, 2.4 Hz, 1H), 7.52 (d, *J*=8.8 Hz, 2H), 12.45 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 79.00, 116.17, 122.82, 125.47, 128.24, 129.04, 129.22, 129.64, 131.79, 133.96, 136.31, 182.84; MS *m*/ *z* 310 ([M+1]⁺, 100). Anal. Calcd for C₁₄H₉Cl₂NOS: C, 54.21; H, 2.92; N, 4.52. Found: C, 53.92; H, 2.88; N, 4.49.

3.3.13. 6'-Chloro-1',4'-dihydrospiro[cyclohexane-1,4'-[3,1]benzoxazine]-2'-thione (**5m**). A pale-yellow solid; mp 203–206 °C (hexane/CHCl₃); IR (KBr) 3156, 1616, 1178 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.26–1.38 (m, 1H), 1.65–1.75 (m, 4H), 1.83–1.88 (m, 1H), 1.92–2.05 (m, 2H), 2.19–2.23 (m, 2H), 6.89 (d, *J*=8.3 Hz, 1H), 7.15 (d, *J*=2.4 Hz, 1H), 7.24 (dd, *J*=8.3, 2.4 Hz, 1H), 10.27 (br s, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 20.66, 24.77, 35.13, 85.28, 115.38, 123.54, 128.63, 128.90, 130.34, 130.43, 183.76; MS m/z 268 ([M+1]⁺, 100). Anal. Calcd for C₁₃H₁₄ClNOS: C, 58.31; H, 5.27; N, 5.23. Found: C, 58.25; H, 5.25; N, 5.11.

3.3.14. 6-Chloro-4-methyl-4-phenyl-1,4-dihydro-3,1-benzoxazine-2thione (**5n**). A white solid; mp 214–215 °C (hexane/THF); IR (KBr) 3158, 1616, 1176 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 2.02 (s, 3H), 7.04 (d, *J*=8.3 Hz, 1H), 7.24 (d, *J*=7.3 Hz, 2H), 7.31 (t, *J*=7.3 Hz, 1H), 7.36 (t, *J*=7.3 Hz, 2H), 7.47 (dd, *J*=8.3, 2.0 Hz, 1H), 7.68 (d, *J*=2.0 Hz, 1H), 12.32 (br s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 27.67, 85.50, 116.23, 125.05, 125.18, 127.23, 128.33, 128.526, 128.534, 129.55, 131.42, 142.17, 182.96; MS *m*/*z* 290 ([M+1]⁺, 100). Anal. Calcd for C₁₅H₁₂ClNOS: C, 62.17; H, 4.17; N, 4.83. Found: C, 62.14; H, 4.14; N, 4.60.

3.3.15. 1,4-Dihydrospiro[3,1-benzoxazine-4,2'-tetrahydrofuran]-2thione (**6a**). A pale-yellow solid; mp 99–102 °C (hexane/CHCl₃); IR (KBr) 3169, 1620, 1167 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.18–2.25 (m, 1H), 2.38–2.44 (m, 1H), 2.47–2.56 (m, 1H), 2.59–2.64 (m, 1H), 4.20–4.24 (m, 1H), 4.39–4.43 (m, 1H), 7.02 (d, *J*=7.8 Hz, 1H), 7.19 (ddd, *J*=7.8, 7.3, 1.4 Hz, 1H), 7.34 (d, *J*=7.8 Hz, 1H), 7.36 (ddd, *J*=7.8, 7.3, 1.4 Hz, 1H), 10.57 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 23.53, 37.61, 70.38, 112.65, 114.34, 120.09, 124.29, 125.22, 130.54, 133.11, 182.83; MS *m/z* 222 ([M+1]⁺, 100). Anal. Calcd for C₁₁H₁₁NO₂S: C, 59.71; H, 5.01; N, 6.33. Found: C, 59.65; H, 4.85; N, 6.14.

3.3.16. 6-*Chloro-1,4-dihydrospiro*[3,1-*benzoxazine-4,2'-tetrahydro-furan*]-2-*thione* (**6b**). A pale-yellow solid; mp 129–131 °C (hexane/CHCl₃); IR (KBr) 3153, 1618, 1165 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.17–2.26 (m, 1H), 2.32–2.39 (m, 1H), 2.46–2.57 (m, 1H), 2.59–2.66 (m, 1H), 4.20–4.26 (m, 1H), 4.39–4.44 (m, 1H), 6.94 (d, *J*=7.8 Hz, 1H), 7.33 (d, *J*=2.4 Hz, 1H), 7.33 (dd, *J*=7.8, 2.4 Hz, 1H), 10.33 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 23.52, 37.81, 70.67, 112.14, 115.62, 121.82, 124.61, 130.33, 130.62, 131.71, 182.57; MS *m*/z

256 ([M+1]⁺, 100). Anal. Calcd for C₁₁H₁₀ClNO₂S: C, 51.66; H, 3.94; N, 5.48. Found: C, 51.73; H, 4.04; N, 5.54.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research (C) 22550035 from Japan Society for the Promotion of Science. We thank Mrs. Miyuki Tanmatsu of Tottori University for her assistance in determining mass spectra and performing combustion analyses.

Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.tet.2010.10.010.

References and notes

- (a) Fensome, A.; Bender, R.; Chopra, R.; Cohen, J.; Collins, M. A.; Hudak, V.; Malakian, K.; Lockhead, S.; Olland, A.; Svenson, K.; Terefenko, E. A.; Unwalla, R. J.; Wilhelm, J. M.; Wolform, S.; Zhu, Y.; Zhang, Z.; Zhang, P.; Winneker, R. C.; Wrobel, J. J. Med. Chem. 2005, 48, 5092–5095; (b) Kern, J. C.; Terefenko, E. A.; Fensome, A.; Unwallla, R.; Wrobel, J.; Zhu, Y.; Cohen, J.; Winneker, R.; Zhang, Z.; Zhang, P. Bioorg. Med. Chem. Lett. 2007, 17, 189–192; (c) Nakagawa, A.; Uno, S.; Makishima, M.; Miyachi, H.; Hashimoto, Y. Bioorg. Med. Chem. 2008, 16, 7046–7054; (d) Zhou, H.-B.; Lee, J. H.; Mayne, C. G.; Carson, K. E.; Katzenellenbogen, J. A. J. Med. Chem. 2010, 53, 3349–3360.
- Generation of 2-lithiophenyl isocyanide by the treatment of 2-bromophenyl isocyanide with butyllithium and its reaction with electrophiles yielding heterocyclic compounds have been reported: (a) Lygin, A. V.; de Meijere, A. Org. Lett. 2009, 11, 389–392; (b) Lygin, A. V.; de Meijere, A. J. Org. Chem. 2009, 74, 4554–4559.
- Kobayashi, K.; Yoneda, K.; Miyamoto, K.; Morikawa, O.; Konishi, H. Tetrahedron 2004, 60, 11639–11645.
- 4. Ito, Y.; Kobayashi, K.; Seko, N.; Saegusa, T. Bull. Chem. Soc. Jpn. **1984**, 57, 73-84.
- Fujiwara, S.; Shin-Ike, T.; Sonoda, N.; Aoki, M.; Okada, K.; Miyoshi, N.; Kambe, N. Tetrahedron Lett. **1991**, 32, 3503–3506.
- Kalk, W.; Bien, H. B.; Schuendehuette, K. H. Justus Liebigs Ann. Chem. 1977, 329–337.
- 7. Smith, K.; Shukla, A. P.; Matthews, I. Sulfur Lett. 1996, 20, 121-137.